Product information

Microprocessors

Device name or family	TID	CPU frequency (MHz)		Instruction width (bits)	Core / I/O operating voltages (V)	Typical power at ma	iximum frequency (W)	
PowerPC7448	100 krads		1000, 1250, 1267	32	1.0 to 1.3 / 1.8, 2.5, 3.3	٤	3.4	
DSP/Multiplication hardware support (bits)	Cache (kbytes)		DMA / Memory controller	Package	Serial, parallel I/O	Temperature range (Tj) °C	Quality level	
128-bit AltiVec vector processor	L1: 32KI/C L2: 1024K), (_	HITCE 360	MPx / 6ox Bus interface	-55 to +125	Target QMLY	
Device name or family	TID	CPU frequency (MHz)		Instruction width (bits)	Core / I/O operating voltages (V)	Typical power at maximum frequency (W)		
PowerPC8548	Target 100 krads		1200, 1330	32	1.1 / 2.5 / 3.3	7	7.9	
DSP/Multiplication hardware support (bits)	Cache (kbytes)		DMA / Memory controller	Package	Serial, parallel I/O	Temperature range (Tj) °C	Quality level	

HITCE 783

PBGA 783

Four 10/100/1000 Ethernet,

DUART, Dual I2C, two 32-bit

PCI, PCI-Express, GPIO, SRIO

-55 to +125

Target QMLY

Broadband data converters

Typical parameters

L1: 32KI/D, L2: 512K

DDR-1/2 SDRAM, SDRAM,

DRAM, SRAM, Flash

	.)													
10 BIT 1.5 GSPS SINGLE CORE L-BAND ADC		o.5dB BW 3dI		IB BW Power		Energy *	Input voltage	Input type	Supply voltages	Latency	ENOB @ Fin			
						at Nyquist	Range		Vcca / Vccd / Vcco	(max speed)	100MHz	75	oMHz	1800MHz
EV10AS180A Fs 1.5 Gsps	110 krads	750MHz	2.4	GHz	1.7W	3.1pJ / Conv.	500mV₀-₽	SE/Diff. AC/DC	5.2V / 3.3V / 2.5V	2.3ns	8.5		8.4	8.0
		SNR @ Fin		SFDR @ Fin		Output type	DMUX		Analog	ue adjustments: Availa		Package	Quality level	
	100MHz	750MHz	1800MHz	100MHz	750MHz	1800MHz			Ratio	Gain range	Offset Clk range Skew	Grades		
	55dB	54dB	52dB	-6odBFS	-6odBFS	-59dBFS	LVDS		1:2 / 1:4	±10%	±10LSB ±40ps	M, S	CICGA255	ESCC9000 QMLV in progress
	Typical parameters													
12 BIT 3 GSPS MUXDAC	TID	3dB BW		Power		Energy *	Output voltage	t voltage Input type	Supply voltages	Latency	NPR at optimum loadi		m loading fa	ctor
						at Nyquist	Range		Vcca / Vccd / Vcco	(max speed)	1 st Nyquist Zon	e 2 nd Ny	quist Zone	3 rd Nyquist Zone
EV12DS130A Clock 3 Gsps	110 krads	7	GHz (fpBGA)	1.3W	o.4pJ / Conv.	${\tt 1V}_{p\cdot p}$	LVDS 4:1 / 2:1	3.3V / 5V	1115	50dB @ 3G 56dB @ 1.5G	44d	IB @ 3G	42dB @ 3G
		ENOB (bits) SFD		SFDR @	@ Fin(-3dBFs out.)		Input type	мих		Settin	gs adjustments	Available	Package	Quality level
	1 st Nyquist	2 nd Nyquist	3 rd Nyquist	1 st Nyquist	2 nd Nyquist	t 3 rd Nyquist			Ratio	Gain range	Input timing adj.	Grades		
	10 @ 3G 10.8 @ 1.5G	9 @ 3G	8.2 @ 3G	70 dBc	61 dBc	53 dBc	LVDS		4:1 / 2:1	±10%	±10LSB 1; 2; 4; 8	C, V M, S	fpBGA196 CICGA255	ESCC9000 QMLV in progress
	Typical	paramo	eters											
10 BIT 3 GSPS MUXDAC			3dB BW		Power	Energy *	Output voltage	Input type	Supply voltages	Latency	N	PR at optimu	m loading fa	ctor
	עוז					at Nyquist	Range		Vcca / Vccd / Vcco	(max speed)	1 st Nyquist Zon	e 2 nd Ny	quist Zone	3 rd Nyquist Zone
EV10DS130A Clock 3 Gsps	110 krads	7	GHz (fpBGA GHz (CICGA	}	1.3W	o.6pJ / Conv.	1V _{p-p}	LVDS 4:1 / 2:1	3.3V / 5V	105	45dB @ 3G 51dB @ 1.5G	400	IB @ 3G	38dB @ 3G
		ENOB (bits)		SFDR @) Fin (-3dl	BFs out.)	Input type		MUX	Settin	gs adjustments	Available	Package	Quality level
	1 st Nyquist	2 nd Nyquist	3 rd Nyquist	1 st Nyquist	2 nd Nyquist	3 rd Nyquist			Ratio	Gain range	Input timing adj. Output clk div.	Grades		
	9.2 @ 3G 9.6 @ 1.5G	8.0 @ 3G	7.8 @ 3G	65 dBc	58 dBc	51 dBc	LVDS		4:1 / 2:1	±10%	8 steps of 1; 2; interface 4; 8	C, V M, S	fpBGA196 CICGA255	ESCC9000 QMLV in progress

A new class in space grade semiconductor solutions

Contact us online at: e2v.com/contact-us

lssue 1 11/14

EV Space grade semiconductor solutions

e2v.com/space

e2v radiation tolerant products increase capability and reduce cost of ownership in a range of space applications

Broadband data converters

e2v's ADCs and DACs create real value for multiple space applications through:

- Removal of frequency converters through microwave capability, removing cost of devices valued over \$100k
- Advanced encryption using software defined cross-band frequency hopping
- Calibration free, both at power-up and versus temperature
- Stable performance versus temperature
- Clean spur-free spectral performance

Microprocessors

e2v's microprocessors increase capability and savings in space applications through:

- NASA QML Class Y qualified microprocessors
- On-board satellite processing algorithms, removing the need to process data on the ground
- New forms of advanced data processing systems
- Compatibility with advanced computing platforms run on-board the satellite
- Industry-proven Power Architecture[™] processor platforms

Applications

Our rad-hard semiconductors increase capability and reduce long term costs in a range of space-based applications

Telecommunications satellites

- Removal of frequency converters reduces cost, weight and power on each transmit and receive channel
- Large Nyquist zones of up to 1.5GHz enable the handling of a high number of leased FDMA channels per hardware signal chain
- Stability versus temperature guarantees high performance, even on low orbit satellites where temperature varies constantly

Weather satellites

- e2v's GHz class processors unlock the computation capabilities on board satellites, providing weather forecasting organisations with richer, real time data
- Heavy computation can be performed on data from various sources, including radars and optical sensors operating in various spectrums

Optical Earth observation

- e2v's processing power enables on-board image processing for image recognition
- Real-time on-board image recognition can detect hazardous situations as they're developing, ideal for weather monitoring agencies and security and rescue teams
- e2v microprocessors are powerful enough to process the highest resolution images, like the image to the left that was captured using e2v high performance imaging sensors

Earth observation data downlink

- e2v's BDCs allow for the removal of frequency converters, reducing both weight and power needs, significantly reducing cost
- Large Nyquist zones combined with high output enable large cross-band frequency hopping for unrivalled encryption
- Nyquist zones up to 1.5GHz enable a hardware signal chains to handle high numbers of FDMA channels
- Stability versus temperature guarantees stable and reliable performance on low orbit satellites where temperature varies constantly

SAR radar Earth observation

- e2v microprocessors are ten times more powerful than common space grade processors
- e2v's microwave capable data converters allow for the removal of frequency converters, reducing both weight and power needs, significantly reducing cost
- Large Nyquist zones up to 1.5GHz allow for high SAR imaging resolution
- Stability versus temperature guarantees stable and reliable performance on low orbit satellites where temperature varies constantly
- Software Defined Microwave capable semiconductors accommodate different frequency regulations as the satellite flies over different world territories